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1. Introduction  

This paper describes a study of speaking-style
characteristics, or “tone-of-voice”, in conversational
speech, and shows that non-verbal information is
transmitted efficiently regardless of cultural and
linguistic contexts through differences in prosodic and
voice-quality features.  We asked Korean and
American listeners with no previous kowledge of
Japanese to judge the meaning of various utterances of
the interjection “eh” in Japanese conversations, and
compared their perceptions with the acoustic
characteristics of the speech.  We found voice- quality
information to be an important discriminator.

2. Paralinguistic speech characteristics

Speech research has moved from a phase in which it
was concerned predominently with the study of lab-
speech, or read speech, into one in which it focuses
more on spontaneous speech.  The latter is often
thought to be ‘noisy’ or ‘ill-formed’, as a result of its
many hesitations and fillers. However, we claim that
these ‘noises’ (or non-verbal speech sounds) are an
important part of inter-personal communication and
that they serve to display affect and discoursal
information as much as lexical and syntactic content
conveys propositional information. The controlled
structure of lab-speech arises from a predominance of
lexical information (and often by a reliance on a
written text as the original basis for the speech), but
with conversational speech, the degree of shared
knowledge between speaker and listener is much
higher, and as a consequence, a large part of the
spoken interaction takes place in a  non-verbal form.
Often the purpose of such speech is not to impart
information, but simply to be social.

The JST/CREST ESP Corpus [1,2] consists of wholly
unprepared speech, with labels for the degree of
familiarity between speaker and hearer, and for
discoursal and affective functions. In this paper, we
present results of an analysis of part of this corpus,
showing that the same lexical string, a word spoken
by the same speaker, often carries different
paralinguistic information.  We show from the results
of our analysis that independent listeners can form a
similar context-independent interpretation of this
‘meaning-behind-the-words’ from similarities in the
prosodic and voice-quality parameters.

The biggest difference that we notice between this
corpus and others that are currently available lies in
the amount of phatic communication, or ‘interactive
social speech’. People speak not to only negotiate
information, but rather to express relationships [3].
This often takes the form of ‘back-channeling’ and
‘fillers’ (sounds which are currently regarded as
                                                            

‘noise’ from the point-of-view of speech-processing,
and therefore disregarded, but we believe that this
aspect of speech communication might be useful for
both recognition and synthesis technologies to enable
‘reading-between-the-lines’ when  p roces s ing
conversational or interactive speech signals.

3. Data for the analysis

We selected 129 utterances of the word “eh” from this
large Japanese spontaneous-speech corpus,
and asked listeners in Korea and America to judge the
meaning or intended effect of each utterance using
software specifically designed for sorting and
categorising speech tokens (‘Mover’ [4], see below).
The listeners were asked to indicate for each “eh”
utterance which of the following set of descriptors it
best approximated: [annoyed, angry, confused,
excited, happy,  he l lo ,  hur t, indifferent,
indifferent/uncaring, relieved, sad- crying, sad,
scared, sick-of, surprised, uncaring, unsure]

The list was generated from a larger list of about 85
adjectives suggested by Japanese listeners using an
open-input version of the same ‘mover’ software. The
utterances were listened to in isolation, with no
previous or following discourse-context information
provided.  Listeners were free to listen to each
utterance as many times as they felt necessary and
were asked to group the utterances into the above
categories as they felt appropriate [5].

This previous work compared the responses of the
non-Japanese listeners (who had no previous
familiarity with the Japanese language) with those of
the native Japanese respondents, and showed that
although there is considerable individual variation in
the choice of descriptor, all listeners were able to
perceive broadly similar effects, and a principal
component analysis identified the dominant
dimensions as fitting well into the valency- activation
framework described in the psychological literature
[6]._The present paper looks at the acoustic
characteristics of these speech utterances, in the
context of the valency-activation dimensions and
attempts to explain the listener’s responses.

4. Acoustic features

The software used for this work is available from the
ESP web-site [7].  It consists of a graphical interface
(written in tcl/tk) for displaying subsets of the corpus
as points in a space for labellers to re-arrange into
groups having similar perceptual aspects.  Figure 1
shows a sample screen.  The meters on both sides of
the screen are not displayed for the labellers, but
present the acoustic characteristics of each utterance
in simple visual form for subsequent manual checking
of the results by speech researchers and for output to a
data file for the utterance set.



Figure 1. The perceptual labelling software, showing
partial results for utterance categorisation (the meters
are not usually shown while labelling)

The feature extraction uses simple routines provided
by the Snack sound library distributed by KTH [8].
The meters on the left show F0 mean, maximum, and
minimum in relative terms, i.e., normalised between
zero and one, as defined by the observed distributions
of the subset of the data currently being displayed.
The bottom three meters show degree of voicing,
relative position of the F0 peak, and relative position
of the rms-amplitude peak for the utterance pointed at
by the cursor.  The meters on the top-right of the
figure show mean, maximum, and minimum for rms
amplitude, and those below show duration and two
measures of spectral tilt (H1-H2, and H1-A3, as used
by Hanson [9], Sluijter [10], and the present author in
previous work [11]). We have proposed an improved
method for measuring voice-quality [12], but it is not
yet incorporated in the present software.

When labellers first open the software, the speech
samples are represented as small circles aligned along
the main diagonal in order of their appearance in the
corpus.  By clicking on each point, the labellers can
hear the phrase (as many times as they like) and are
able to move it to a different place on the screen.
They are free to form as many groups as they wish,
and then surround each group with a box having a
label to be selected from the above list.  Boxes can
overlap or be nested.

The output from the labelling program was stored as
text files, indicating the category determined for each
speech token.  We performed a Principal Component
Analysis (‘princomp’ in “R” [13]) on both the
perceptual category data and on the acoustic
characteristics of the speech utterances.  Results of the
perceptual analysis were presented in [5], and we
focus here on linking these to the acoustic data
analysis.  Figures 2 and 3 show bi-plots of the
perceptual labels (listed with translations in Table 1)
with arrows indicating the strength of each feature in
this view of the space. The two components account
for 32% and 25% of the variance respectively.

Table 1. The labels for the PCA plots of perception:

ead   annoyed kgc   guichanta (annoyed)
  ean   angry khn   hwaganada (angry)
  eco   confused kch   chilmunhada (question)
  eex   excited khd   haengbunhada (excited)
  eha   happy khb   haengbokhada (happy)
  ehe   hello kay   anneyong (hello)
  eht   hurt kta   tachida (hurt)
  ein   indifferent kda   darum (other)
  eiu   indiff/unc km2 musimhan (indifferent/uncaring)
  erl   relieved kas   ansimhada (relieved)
  esc   sad-crying ksp   sulpuda (sad/crying)
  esd   scared km3   musupda (scared)
  eso   sick-of kap   apudan (sick-of)
  esp   surprised knl   nolada (surprised)
  eun   uncaring kmu   musimhada (unconcerned)
  eus   unsure kpl   pulanjohghan (unsure)

5. Principal component findings

From the principal component analysis of the
perceptual results, we found that both Korean and
American listeners were able to distinguish
differences between the 129 utterances of “eh” and
were able to align them similarly in terms of (for the
first two components at least) valency and activation,
the two main dimensions that have been suggested in
the psychological literature as explaining expression
of emotion or affect.

We can see from figures 2 and 3 that the descriptors
are aligned similarly, although the plots show the
space to be rotated.  It is known that the directions of
the axes in a principal component analysis are
arbitrary, being unitless but scaled equivalently, so the
sign of these axes can be ignored, showing the two
plots to be equivalent. The vertical axis in both plots
probably represents activation. It is not always clear in
a principal component analysis what each dimension
might represent, but strong descriptors are found at
the top of each plot and weak ones at the bottom.  The
horizontal axis probably represents valency, with
positive descriptors on the right for the American
responses and on the left for the Korean ones, and
negative descriptors on the left for the American and
on the right for the Korean responses (for a more
detailed discussion of these results and their
implications, please refer to [5]).

Table 2.  Loadings from the principal component analysis of
acoustic features.  The bottom line shows the cumulative
percentage of variance explained by each component. Bold
figures indicate the dominant  features in each dimension.
        Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

fmean -0.381 -0.288 -0.223 -0.170  0.146

fmax  -0.369 -0.189 -0.230 -0.221    ---

fmin  -0.235 -0.471 -0.190 -0.123  0.269

fvcd  -0.334  0.230  0.132 -0.158 -0.200

fpos  -0.244    ---    --- -0.312 -0.567

ppos   0.124 -0.232  0.213 -0.503 -0.435

pmean -0.330  0.341  0.235    ---  0.123

pmax  -0.376  0.152    ---    ---  0.224

pmin     ---    ---  0.649 -0.172  0.338

dur   -0.116  0.347 -0.474  0.142 -0.134

h1h2  -0.285 -0.174  0.264  0.468 -0.294

h1a3     --- -0.488  0.104  0.416 -0.215

a3     0.345 -0.150 -0.118 -0.288  0.124

percent: 40.6   54.1   65.2  74.7   82.8



Figure 2.  The first two dimensions of the principal
component analysis for the American listeners’ perceptions
Loadings:

     Comp.1  Comp.2  Comp.3  Comp.4  Comp.5

ead  -0.364     ---   0.211  -0.301     ---

ean  -0.230   0.293   0.343   0.227   0.271

eco   0.301     ---   0.334     ---  -0.231

eex   0.400   0.132     ---     ---   0.148

eha   0.302     ---     ---  -0.418     ---

ehe   0.104  -0.138  -0.101  -0.233   0.548

eht  -0.190   0.381     ---   0.158   0.250

ein  -0.185  -0.487     ---     ---   0.161

eiu  -0.162  -0.457     ---     ---   0.172

erl  -0.109     ---  -0.183  -0.270   0.216

esc  -0.140   0.193  -0.418  -0.323  -0.418

esd           0.247  -0.579   0.228     ---

eso  -0.349   0.256   0.287  -0.133     ---

esp   0.399     ---   0.230     ---     ---

eun  -0.176  -0.164     ---  -0.206  -0.408

eus  -0.147  -0.305  -0.114   0.541  -0.176

percent: 17.8 32.1  41.5   49.5   57.3

We performed a similar analysis of the acoustic
features of each utterance using the feature descriptors
produced by the ‘Mover’ software and the normalised
values for each acoustic component listed above.
Figure 4 plots the first two components and figure 5
plots the third and fourth.  We can see from Table 2,
which shows the loadings of each factor in this
analysis, that the first four components account for
approximately 75% of the overall variance, and the
first two explain more than 50%.

From our previous work, we had expected to find that
the first dimension fits fundamental frequency, the
second dimension differences in duration, the third
power, and the fourth spectral-tilt.  However,
inspection of Table 2 reveals a different ordering. We
can see that the first dimension does indeed fit well to
differences in fundamental frequency, but the next
three reveal interesting information. It appears that
voice-quality is more important.

Figure 3.  The first two dimensions of the principal
component analysis for the Korean listeners’ perceptions
Loadings:
    Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

kap  0.383  0.342  0.129    ---    ---

kas    --- -0.359  0.206  0.254  0.357

kay -0.140 -0.344  0.185  0.371  0.341

kch  0.357    ---  0.278  0.131    ---

kda    --- -0.228 -0.433 -0.382  0.191

kgc  0.445    ---    ---  0.126    ---

khb -0.233    ---  0.371 -0.124  0.312

khd -0.330    ---    ---    --- -0.153

khn    ---  0.135 -0.421  0.536  0.181

km2  0.201 -0.440    --- -0.144 -0.342

km3    ---  0.165 -0.257  0.329 -0.307

kmu  0.168 -0.483    ---    --- -0.275

knl -0.420    ---  0.156    --- -0.362

kpl -0.144  0.147  0.207 -0.171    ---

ksp  0.259  0.243  0.139 -0.217  0.172

kta    ---    --- -0.401 -0.295  0.313

percent: 14.3 25.7  34.6   42.3   49.8

The a3 feature (amplitude of the third formant) in
component 1 accounts well for a small cluster of
creaky-voice utterances that have no energy in the
area of the third formant because they are unvoiced.
This appears to be a stronger indicator than fvcd
(degree of voicing). However, the second component
features fmin and h1a3 most strongly.  These reflect
voice-quality. Our previous work has shown this
dimension to vary consistently in discourse-related
ways [3], but the present analysis might be interpreted
as indicating that voce quality has a more important
role in portraying paralinguistic information in non-
lexical uterances. The third dimension includes
duration and minimum power, both indicating
strength of utterance, and the fourth includes both
p p o s  and h1h2 .  Both these features represent
amplitude, or power of the voice. h1h2 is a simple
measure of spectral energy distribution, and ppos
indicates the position in time of the peak of maximum
energy in the utterance.



Figure 4. The first two dimensions of the Principal
Component Analysis of the acoustic features of “eh”.  In the
horizontal dimension we find fundamental frequency to be
dominant, and in the vertical  dimension, we find voice

6. Discussion

This paper has described an analysis of the acoustic
features of a set of 129 utterances of the interjection
“eh” in conversational speech.  We have shown
elsewhere that non-native listeners from different
cultural backgrounds were able to correctly perceive
the discourse and affective information in the majority
of the utterances, and here described the acoustic
features that best explain their distinctive
characteristics by means of a principal component
analysis.
We found that in addition to the conventional prosodic
parameters of pitch, power, and duration, voice-
quality emerges as an important discriminator.  The
tone-of-voice of an utterance is known to be of
perceptual significance to human listeners, and its
acoustic correlates of breathiness or increased spectral
tilt can be measured by several methods.  Here, we
have seen that the h1a3 measure proposed by Hanson
and Sluijter is an effective discriminator that can be
easily calculated by means of a simple tcl function.  It
appears that in addition to the pitch of each utterance,
the power of the voice is also important in
discriminating between different uses of the
interjection “eh”, which can express a variety of
meanings or pragmatic effects in conversation.  From
the pca of the Japanese listeners data we determined
that at least 15 different ‘meanings’ can be
discriminated reliably.

7. Conclusion

This work is part of the ATR/JST Expressive Speech
Processing project for the design of human-friendly
speech technology.  It shows not only that non-verbal
utterances play an important part in speech perception,
but also that the technology is available for processing
such information for the machine understanding of
human communication.  We now aim to extend this
work to other and more varied speech utterances, and
eventually incorporate the results in both speech
recognition and synthesis.

Figure 5. The third and fourth dimensions of the Principal
Component Analysis of the acoustic features of “eh”. Here,
the horizontal dimension appears to represent force of
utterance, and the vertictal dimension loudness
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