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Abstract

This paper presents the results of a preliminary analysis of the
sounds of dog barks in various everyday situations. Seven types of
bark were recorded from twenty-seven dogs of breed Mudi. Barks were
recorded in the following situations: alone,playing with a ball, fighting
with a human, food time, at play with a human, warning of a stranger,
and taking a walk. Not all dogs were recorded in every situation,
but a few were, and the analysis of these barks forms the core of this
technical report. Statistical analysis of the acoustic parameters of each
bark was performed, and a principal components analysis determined
which were the main contributing factors in each case. A statistical
model was then trained (we used both classification trees and state-
vector machines) to predict the most likely category for each bark by
training either with barks from other dogs opr from barks of the same
dog with a subset held back for testing. N-fold cross-validation was
tested at n=>5, n=10, and n=15. Good categorisation was possible
for each dog when trained on similar material from the same dog,
but models trained on one or more different dogs were very poor at
categorising the barks of another.

1 Introduction

Recordings were made available by Professor Ad4m Miklési and the analysis
was carried out by Nick Campbell while working with Géza Németh as
a guest of the BME during the summer of 2010. Table 1 shows counts
of the barks recorded in each of the seven categories. Table 2 shows the
total number of barks recorded for each of the twenty-seven dogs for each
category.of bark. It is clear from Table 2 that not all dogs were recorded in
all conditions, and that some dogs only produced a small number of barks.
Those dogs that were not prolific were clustered into a single category (shown
by an ‘x’ in Table 3) which was used for non-specific training and testing.
The most prolific dogs were d12, d23, and d24. Only d24 barked in all



categories. These three dogs formed the core of our training and testing
material, and numbers of data-points are given in Table 3.

Table 1: Showing the number of barks recordes for 7 categories of bark:
a=alone, b=ball, f=fight, fo=food, p=play, s=stranger, and w=walk

a b f fo p S w
853 | 1105 | 1236 | 877 | 880 | 1593 | 851

Table 2: Showing the total number of barks (in all categories) recorded for
each dog. Dogs are numbered from dO1 to d27 to preserve their privacy,
though identities are noted in a separate file kept in a locked drawer.

do1 | d02 | d03 | d04 | d05 | d06 | dO7
22 | 40 15 10 | 303 | 20 | 40
do8 | d09 | d10 | d11 | d12 | d13 | d14
95 | 728 | 108 | 20 | 1045 | 8 | 480
d15 | d16 | d17 | d18 | d19 | d20 | d21
33 | 354 | 38 |277| 20 | 720 9
d22 | d23 | d24 | d25 | d26 | d27 | -
9 [970 | 1701 | 91 | 111 | 128 | -

Table 3: Showing the number of barks in each category for the dogs with
most recordings. A separate category ‘x’ has been made to contain the data
of dogs with fewer barks. See Table 1 for explanation of category labels.

a b f fo ) S A4

do5 | 10 - - - 158 135 -
do9 | - 50 - 163 - 487 28
di2 | 152 193 345 99 - 194 62
di4 | 168 158 34 101 - 9 10
di6 | - 20 100 3 44 118 69
dig8 | 48 63 - - 147 10 9
d20 | - 177 161 137 146 9 90

d23 | 140 201 139 187 0 150 153
d24 | 277 165 235 168 313 208 335
d27 | - 23 64 - - 26 15

X 58 55 158 19 72 247 80




2 Principal Components Analysis

The acoustic features for each bark were calculated using the Snack speech
processing library [?], part of the Tcl/Tk programming language. The fea-
tures we tested were measures of fundamental frequency, speech amplitude,
and spectral tilt. For fundamental frequency and power, we calculated the
mean, maximum, and minimum values measured across each bark, as well
as the position of the maximum in relative percentage values within the
waveform. We measured spectral tilt by the difference between the first
harmonic and the amplitude of the third formant, after Hansen '90 [?], and
included duration of the bark as well as the amount of voicing it contained.
The following values were obtained for the set of barks as a whole:
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A principal components analysis showed these parameters to be largely
independent, and a combination of the first seven components cumulatively
accounted for 83% of the variance in the data:

Importance of components:
Cmp.1 Cmp.2 Cmp.3 Cmp.4 Cmp.5 Cmp.6
Standard deviation 1.7597 1.5894 1.3210 1.12837 1.0773 1.00134
Proportion of Variance 0.2211 0.1804 0.1246 0.09094 0.0829 0.07162
Cumulative Proportion 0.2211 0.4016 0.5262 0.61724 0.7001 0.77177
Cmp.7 Cmp.8 Cmp.9 Cmp.10 Cmp.11 Cmp.12
Standard deviation 0.94532 0.89067 0.71722 0.69154 0.62758 0.253054
Proportion of Variance 0.06383 0.05666 0.03674 0.03415 0.02813 0.004574
Cumulative Proportion 0.83560 0.89226 0.92900 0.96316 0.99130 0.995876
Cmp.13  Cmp.14
Standard deviation 0.240279 3.220e-04
Proportion of Variance 0.004123 7.4104e-09
Cumulative Proportion 0.999999 1.000e+00

Loadings: (shown here only for the first 9 components):
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9

fmean -0.429 0.224 -0.406 -0.194 0.189

fmax -0.447 0.120 0.147 -0.375 -0.192 0.2562

fmin 0.149 -0.194 0.442 -0.183 0.318 -0.363 -0.157 -0.209
fpct -0.178 0.247 -0.407 -0.319 -0.117 0.115 0.209 -0.622
fved -0.248 0.314 -0.315 0.151 0.184 0.121 0.102 0.476
pmean 0.164 0.540 0.271

pmax 0.319 0.351 -0.490 0.104 -0.111 -0.195
pmin 0.192 0.484 0.207 0.250
ppct 0.134 -0.282 -0.124 -0.769 0.252 -0.325 0.176
hih2 -0.163 0.201 -0.189 -0.139 0.222 0.279 -0.346 -0.764 -0.215
hila3  0.443 -0.234 -0.427 -0.104 0.152

hi 0.452 -0.240 -0.290 0.119 -0.283 0.200

a3 0.110 0.544 0.121 -0.366 -0.672 0.172 -0.133
dn -0.265 -0.167 -0.651 -0.409 -0.166 0.364

As can be seen from the loadings, the first principal component is largely related to
a combination of (mean & max) fundamental frequency and spectral slope, the second to
power of the bark (mean & min), and the third to minimum fundamental frequency and
position of the peak. These three axes alone account for little over half of the variance
observed in the sound of the barks. Blanks in the table above indicate non-significant
relations, held out for ease of viewing.

Figures 1 and 2 plot the acoustic data for two dogs (d12 and d24) to illustrate the
difference in the distribution of barks in the two most relevant dimensions. Figures 3 and
4 show the equivalent data for dog D12 plotted according to the PCA, Figure 3 showing
the first and second components (rotated features) with vectors representing the similarity
of the various features. Figure 4 is an amalgam showing the same data plotted according
to combinations of the first four dimensions.
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Figure 1: Plotting the seven types of bark (see Table 1 for ex-
planation) in terms of pitch and power of the acoustics. Note for
example that ‘f’ (fighting) is characterised by relatively high mean
power, and that ‘b’ (playing with a ball) is characterised by rela-
tively low mean power. Most barks are in the region of high pitch
(fundamental frequency) and there is considerable spread of bark
categories across the whole of this two-dimensional feature space.
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Figure 2: Dog 12 shows a very different distribution of categories
across the same feature space, making better use of the range of
fundamental frequency (fmean) Note especially that the ‘b’ cat-
egory appears to exhibit two clear variants or subsets; one with
high mean power, overlapping with ‘s’ (stranger), and the other
with relatively low mean power, overlapping with ‘fo’ (food). One
is tempted to speculate here that the dog is playing two types of
game with the same ball perhaps?
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Figure 3: Biplots of the first two principal components of dog D12’s
acoustic features and associated categories.
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Figure 4: Biplots of the first 4 principal components of dog D12’s
acoustic features and their categories, showing the overall shape
of the data space.
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3 Prediction using Classification Trees

We used the ‘R’ statistical package [?] to perform a statistical modelling and prediction
of the above acoustic material, learning the correlation of each acoustic category to the
category of barks and predicting from the characteristics of unseen samples to classify
each sound into one of the seven types of bark.

Both Classification Trees and SVMs were tested; the former being relatively weak at
prediction but very useful for examining the contribution of the factors, and the latter
being perhaps the strongest classifier available for general use.

The classification tree was trained with the ‘R’ command ‘Tree’, taking d2$ctxt (the
object containing the contexts or categories of the barks, and learning the factors of x2
(the object containing the acoustic variables) that best predict those categories. Here we
examine the subset containing the barks of dog D24 first. The ‘>’ symbol indicates an
‘R’ command line:

> ttt=tree(d2$ctxt ~ ., x2,subset=d2$id=="d24")
> summary (ttt)
Classification tree:

tree(formula = d2$ctxt ~ ., data = x2, subset = d2$id == "d24")
Variables actually used in tree construction:
[1] lldnll llpmaxll IIaSII Ilppctll Ilpmeanll Ilfvcdll

Number of terminal nodes: 10
Residual mean deviance: 2.889 = 4886 / 1691
Misclassification error rate: 0.575 = 978 / 1701

Next we use the tree to predict a classification for the same data. Since the tree has
been pruned so strongly, it only predicts less than half of the tokens correctly, but the
confusion matrix allows us to see the typical confusability in the data (see also Figure 5):

> ttp=predict(ttt,type="class")
> table(ttp,ctxt[d2$id=="d24"])

ttp a b f fo p W
a 43 13 36 2 0 1 17
b 22 77 14 59 4 13 19
f 23 42140 19 5 46 25

fo 29 6 0 40 39 0 18
p 70 O 16 128 14 56
s 48 5 4 19 11 117 22

42 22 40 13 126 17 178

[

Play (p) and Stranger (s) appear to be well predicted, and we can assume that they have
characteristic or distinctive acoustical features that distinguish them, but Ball (b) and
Fight (f) show some confusion, indicating that their acoustic features are not so clearly
distinguished at this simple level of statistical decision making. Not surprisingly perhaps,
Walk (w) and Play (p) appear to be highly confused (similar?). Stranger (s) is similarly
confused with Fight (f). For completeness, we look next at the performance through
detailed counts (note the use of ‘==’ here):

> table(ttp==d2$ctxt[d2$id=="d24"])

FALSE TRUE
978 723
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Figure 5: The Classification Tree for predicting barks from D24 -
with 10 leaves, showing duration to be the first determining factor,
followed by pmax, a3, and f0-voicing respectively. This simple tree
predicts less than half of the barks correctly, but confirms that
most of the features are being used in making the classification.
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We turn next to dog D12.

> ttt=tree(d2$ctxt ~ ., x2,subset=d2$id=="d12")
> summary(ttt)

Classification tree:

tree(formula = d2$ctxt ~ ., data = x2, subset = d2$id == "d12")
Variables actually used in tree construction:
[1] llpminll llpmaxll Ildnll Ilpmeanll Ilfmeanll Ilfvcdll Ilfminll

Number of terminal nodes: 15

Residual mean deviance: 2.087 = 2150 / 1030
Misclassification error rate: 0.4134 = 432 / 1045
> table(ttp,d2$ctxt [d2$id=="d24"])

ttp a b f fo p s W
a 43 13 36 2 0 1 17
b 22 77 14 59 4 13 19
f 23 42140 19 5 46 25

fo 29 6 0 40 39 0 18
p 70 0 1 16 128 14 656
s 48 5 4 19 11 117 22
w 42 22 40 13 126 17 178

> table(ttp==d2$ctxt[d2$id=="d24"])

FALSE TRUE
978 723

This time the tree predicts almost 60% of the tokens correctly, but as the plot (Figure
6) shows, a completely different set of features is used. Finally we test the entire dataset.
The tree only develops 5 terminal nodes, and fails to predict more than 69% of the to-
kens, with no predictions of Walk, Food, or Alone barks Interestingly, Fight and Stranger
appear to be well predicted but internally confusable. However, it is clear that there is
considerably individuality in the remaining categories of barks for these dogs.

Classification tree:

tree(formula = d2$ctxt ~ ., data = x2)
Variables actually used in tree construction:
[1] "pmin" "dn" na3u "pmax"

Number of terminal nodes: 5

Residual mean deviance: 3.581 = 26470 / 7390
Misclassification error rate: 0.6944 = 5135 / 7395
> ttp=predict(ttt,type="class")

> table(ttp,d2$ctxt)

ttp a b £ fo P s W
a 0 0 0 0 0 0 0
b 72 398 134 370 67 182 134
f 216 117 549 76 167 308 234
fo 0 0 0 0 0 0 0
P 66 93 24 38 259 49 93
s 500 497 529 393 387 1054 390
W 0 0 0 0 0 0 0

11
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Figure 6: The Classification Tree for predicting barks from D12 -
with 15 leaves, using a different set of parameters and parameter
ordering from that determined for D24, starting from min-pitch,

then looking at mean and max of the same.

about 60% of the barks correctly,

12

This tree predicts
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Figure 7: The Classification Tree for predicting barks from D24 -
with 10 leaves, showing duration to be the first determining factor,
followed by pmax, a3, and f0-voicing respectively. This simple tree
predicts less than half of the barks correctly, but confirms that
most of the features are being used in making the classification.
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4 Prediction by SVM

Support Vector Machines are included in the library 1071 in ‘R’. Training an SVM on
the same data gives a much more successful result, since it employs a total of 6744 Support
Vectors to predict the data, rather than the 10 to 15 terminal nodes determined by the
Classification Tree. Since it is not feasible to examine those vectors individually (as it
was with the branches of the tree) we use n-fold cross validation to hold out n% of the
data, train with the rest and then test with the held-out samples. Here we set n=15 (it
is usually about 10, so this is a stricter test perhaps) and find that on average the SVM
can successfully predict less than half of the samples.

> sss=svm(d2$ctxt ~ ., x2,cross=15)
> summary (sss)

Call:
svm(formula = d2$ctxt ~ ., data = x2, cross = 15)

Parameters:
SVM-Type: C-classification
SVM-Kernel: radial
cost: 1
gamma: 0.07142857

Number of Support Vectors: 6744
( 1070 845 1339 1019 839 828 804 )
Number of Classes: 7

Levels:
abffopsw

15-fold cross-validation on training data:

Total Accuracy: 45.94997

Single Accuracies:

38.94523 50.91278 46.65314 48.27586 44.62475 47.66734 43.20487
46.4503 48.88438 47.66734 47.87018 46.04462 45.23327 46.24746 40.56795

However, when we limit the prediction to a subset of the barks, predicting in this case
those of dog D12, we achieve an accuracy of greater than 60% in the general case:

Call:
svm(formula = d2$ctxt ~ ., data = x2, cross = 15, subset = d2$id == "di12")

Parameters:
SVM-Type: C-classification
SVM-Kernel: radial
cost: 1
gamma: 0.07142857

Number of Support Vectors: 923

14



( 149 157 280 89 188 60 )
Number of Classes: 6

Levels:
abffopsw

15-fold cross-validation on training data:

Total Accuracy: 60.86124

Single Accuracies:

31.88406 54.28571 62.85714 62.31884 75.71429 77.14286 75.36232
64.28571 65.71429 69.56522 65.71429 62.85714 57.97101 51.42857 35.71429

When we then examine the individual prediction accuracy for each category by running
the SVM in ‘predict’ mode and comparing with the original categories, we obtain the
following confusion matrix:

> ssp=predict (sss)
> table(ssp,ctxt[d2$id=="d12"])

ssp a b f fo p s w
a 93 2 2 11 0 156 1
b 11142 8 4 0 6 1
f 33 35320 9 0 68 7
fo 11 11 7 72 0 6 1
P 0o 0 o o o o o
s 3 3 7 1 0 9 1
W i o0 1 2 0 0 51

This can be compared with a similar exercise for dog D24, achieving similar accuracy
(given the larger number of classes) and clear discrimination, as confirmed by the two
clear confusion matrices.

> sss=svm(d2$ctxt ~ ., x2,subset=d2$id=="d24",cross=15)

Total Accuracy: 56.61376

Single Accuracies:

46.90265 56.63717 55.26316 57.52212 64.91228 50.44248 58.40708
50.87719 66.37168 52.63158 63.71681 67.25664 56.14035 61.9469 40.35088

> ssp=predict(sss)
> table(ssp,ctxt[d2$id=="d24"])

ssp a b f fo p s W
a 187 9 6 12 16 18 29
10 109 5 28 1 7 15
f 12 13 188 1 1 11 17
fo 15 20 4103 2 3 8
p 21 1 7 19 237 2 47
s 21 8 8 0 5154 10
11 5 17 5 51 13 209

o'

15



5 Cross Prediction (across dogs)

The final exercise in this report concerns the training of a SVM on one dog and then
testing the results on another. To do this, we first make a subset of the data containing
the material related to each dog. Here we use for example dogs D12, D23, and D24:

> di12=subset(d2,id=="d12")
> d23=subset (d2,id=="423")
> d24=subset (d2,id=="d24")

then make a training subset of each, separating the predictor variables from the indepen-
dent categories:

x12=subset (d12, select=c(-ctxt,-n,-id,-wav))
y12=d12$ctxt
x23=subset (d23, select=c(-ctxt,-n,-id,-wav))
y23=d23$ctxt
x24=subset (d24, select=c(-ctxt,-n,-id,-wav))
y24=d24$ctxt

V V. V V VvV V

and then perform the model training to build the SVM:

> m12=svm(x12,y12)
> m23=svm(x23,y23)
> m24=svm(x24,y24)

and test the results on the closed data, where perfect prediction can be expected (but
considerable confusion remains in certain categories of bark):

> table(y12,predict(m12))

yi2 a b f fo p s w
a 93 11 33 11 0 3 1
b 2142 35 11 0 3 O
f 2 8320 7 o0 7 1
fo 11 4 9 72 0 1 2
p 0o o o o o o0 o
s 15 6 68 6 0 99 O
W i1 1 7 1 0 1 51

> table(y23,predict(m23))
y23 a b f fo p s W
a 124 o0 11 2 0 1 2
b 3166 2 33 0 1 7
f 16 0123 0 O O O
fo 3 40 0133 0 1 10
P 0o 0o o0 o o o0 o
s 4 27 0 9 0 96 14
0O 8 0 20 0 10 115

and then between dogs, in the open data case, training first on one and then testing on
the other:

16



> table(yl12,predict(m23,x12))

yi2 a b f fo p s W
a 20 11 59 29 O 8 25
b 3 32 58 17 0 41 42
f 30 71149 26 0 20 49
fo 12 20 24 12 0 8 23
P o o o0 o o o0 o
s 24 24109 10 O 18 9
W 3 5 23 0 0 25 6

> table(y23,predict(m12,x23))

y23 a b f fo p s w
a 20 0 59 10 O 51 O

b 0 219 o0 0 5 4

f 19 0 5 1 0 64 O
fo 10 5161 0 0 10 1
P 0o o0 o0 o o o0 o

s 6 0 91 0 O 40 13

5 5128 0 O 9 6

or expressing the above in simpler numerical terms:

> table(y23==predict(m12,x23))

FALSE TRUE
847 123

> table(yl2==predict (m23,x12))

FALSE TRUE
808 237

we see from these very poor cross-prediction results that the previously effective SVM
cannot be trained on one dog to predict the bark categories of another. Results are
similar for tests with dog D24, but for reasons of space have not been included here.

6 Discussion

From the above results, we conclude that barks are generally consistent in their acoustic
realisation and that simple statistical models can be trained to predict the category of
bark from the acoustics of that bark type for several different dogs. Within dog, we can
obtain good prediction accuracies, of around 60% for a seven-category task, but across
dogs the prediction accuracy drops considerably. It might be concluded from this that
dogs learn to bark in a given situation individually, rather as a species, and that they bark
to communicate with their owner, rather than with each other. This is speculation by the
first author, a non-expert, but such an interpretation would be supported by the above
data.

Within dogs, barks appear to be clearly distinguished and can be recognised to a
large extent from their acoustics, but there is also considerable variety that prevents a
more successful classification. This remains as work in progress. We will look next at the
sequence of barks, to see if there is an effect for position in the bark sequence that might
explain the apparent confusion in the data.
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